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Abstract 

This paper presents a probability density function (PDF) form of 

the population balance equation (PBE) for polydispersed particles 

in turbulent flows and, for the first time, it includes explicit 

consideration of inertial effects in the PDF-PBE formulation. 

This model has wide application but has particular potential for 

understanding and improving liquid fuel spray in diesel engines. 

In this first step towards modelling inertial particles, the number 

density is taken as a function of particle size (volume) and 

velocity as well as space and time. Inertial effects are quantified 

through the Stokes number, leading to accurate modelling of the 

different trajectories that are followed by particles with different 

sizes. To treat these effects, a new affordable numerical approach 

is proposed which we call the binned Stokes method. In this 

approach, particles accelerate due to fluid dynamics forces 

associated with an averaged numerical Stokes number in each bin 

and hence the dimensionality of the model is determined by the 

number of such bins. A test case is constructed involving the 

turbulent jet dispersion of particles ranging in size from 1 μm to 

100 μm. The results confirm the ability of the approach to 

accurately model the particle dispersion using as few as six 

Stokes bins thus offering the potential to greatly reduce the 

computational cost of the PDF-PBE equations for inertial 

particles. 

Introduction  

The transport of polydispersed particles in turbulent flows is 

relevant to many applications such as liquid spray fuel injection 

in diesel engines and gas turbines. An efficient liquid fuel 

injector can reduce the droplet size leading to shorter evaporation 

times, higher volumetric heat release rates, wider burning ranges 

and reduced pollutant emissions. The dynamics of droplets and 

other particles transported by a turbulent flow involves a complex 

series of inter-related phenomena including particle dispersion, 

surface growth (or shrinkage), breakage and agglomeration. In 

the present work we focus on modelling dispersion, noting it has 

a strong influence on the subsequent downstream processes [3]. 

Particles cannot be treated as point-like fluid tracers due to their 

mass density being, in general, vastly greater than that of the 

carrier phase. As a consequence of their size-related inertia, 

inhomogeneities develop in the particle spatial distribution, a 

phenomenon that is frequently referred to as preferential 

concentration [2]. The inertia of the dispersed phase also has a 

dissipative effect on the turbulence of the carrier. 

Despite recent advances [1, 4, 8], the simulation of inertial 

particle dispersion remains challenging, not least because of the 

difficulty of capturing the preferential concentration in a 

computationally tractable fashion. For example, the PDF method 

of Bini and Jones [3] incorporates inertial particles on size 

dependent numerical parcels whereby the number of parcels is 

not fixed but can increase greatly due to growth, breakage and 

agglomeration making computational load balancing next to 

impossible. This problem increases exponentially as additional 

characteristics of the inertial particles (e.g. shape and 

morphology) are added. The population balance equation (PBE) 

approach postulates a number distribution of a dispersed phase 

with the physical properties introduced as internal coordinates of 

the number density function thus allowing, at least in its 

mathematical formulation, representation of polydispersed 

distributions on a fixed but possibly large computational grid. 

Nearly six decades ago Williams [12] provided a number density 

derivation for sprays and several more recent reviews of the PBE 

for a range of physical applications exist in the literature [7, 9, 

10]. Rigopolous extended the PBE method to turbulent flows by 

introducing the probability density function (PDF) of the PBE 

(termed PDF-PBE) [9, 10]. To the best of our knowledge 

applications of the PBE, including applications in turbulent 

flows, have been limited to cases where the relative velocity 

between the continuous and dispersed phases may be neglected 

[9]. As a result, particles travel with the carrier fluid velocity 

regardless of their size or shape. However, this assumption 

cannot be justified where the effects of inertia on particle motion 

are significant. To summarise the situation, the mathematical 

formulation of the PBE approach offers the potential of 

modelling the turbulent transport of polydispersed inertial 

particles but currently lacks a tractable computational method for 

solution when the particle dynamics involve inertial forces due to 

multiple physical characteristics of the particles. 

The objective of this paper is to present a novel PDF-PBE 

approach that explicitly addresses inertial effects in a 

computationally tractable way. The governing equations are 

presented in general form but in this first step, the validation 

study focuses on the dispersion of inertial spherical particles of 

different sizes in a turbulent flow while neglecting growth, 

breakage and agglomeration. 

The PDF-PBE model for inertial particles 

The PBE governs the evolution of the particle number density 

function, N, in a phase space, R. The latter is decomposed into 

the coordinate space,  𝒙 = (𝑥1, 𝑥2, 𝑥3), and the property (or state) 

space, 𝝃 = (𝜉1, … , 𝜉𝑀), which can include particle size 

(commonly, volume), shape, surface area, etc. It may also include 

flow dependent quantities such as particle velocity to quantify 

inertial effects. 𝑁(𝒙, 𝝃, 𝑡)𝑑𝒙𝑑𝝃 is defined as the ensemble of 

entities having coordinates in the range (𝑑𝒙, 𝑑𝝃) around (𝒙, 𝝃) at 

a given time, t. Using this definition, the PBE is written as [11] 

𝜕𝑁

𝜕𝑡
+ ∇𝒙(𝑼𝑁) + ∇𝝃(�̇�𝑁) 

      = ∇𝒙(𝐷𝒙∇𝒙𝑁) + ∇𝝃(𝐷𝝃∇𝝃𝑁) + 𝑊, (1) 

where 𝑼(𝝃; 𝒙, 𝑡) and �̇�(𝝃; 𝒙, 𝑡) are the time rates of change in the 

physical and the property spaces, respectively, and 𝐷𝑥(𝝃; 𝒙, 𝑡) 

and 𝐷𝝃(𝝃; 𝒙, 𝑡) are the diffusion coefficients accounting for 

random thermodynamic fluctuations (e.g. Brownian motion) in 

those spaces. The source term, W, is the net outcome of discrete 

births and deaths of particles due to breakage and agglomeration. 



The eventual goal of our research is to have a computational 

model for secondary atomisation of injected fuel. The physics of 

that problem allow us to simplify the above general formulation 

of the PBE. Experimental evidence of secondary atomisation [5] 

indicates that droplets may be characterised by size and shape. In 

this initial work we consider only spherical particles thus 

eliminating shape as a state variable i.e. 𝝃 = (𝑉). As is normal 

practice [11] it is assumed that 𝐷𝝃 = 0, while 𝐷𝑥  may also be 

neglected as it approaches zero for inertial particles. Further, 

growth due to evaporation and condensation is neglected due to it 

having a small effect relative to breakup in the secondary 

atomisation zone of an internal combustion engine. Hence, the 

PBE can be rewritten as 

𝜕𝑁

𝜕𝑡
+ ∇𝒙(𝑼𝑁) = 𝑊.           (2) 

Various models for W are suggested in the literature [6]. 

Although we set the source to zero in the dispersion validation 

study below, we retain 𝑊 in the derivation in order to 

demonstrate the closed form treatment of this highly non-linear 

term in the context of PDF methods.  

Equation (2) holds for either laminar or turbulent flows although 

for the latter a numerical method to solve it directly needs to 

resolve all the scales of turbulence. Continuum DNS of particle 

laden flows has an even greater cost than single-phase DNS as 

one must resolve down to the Batchelor scale 𝜂𝐵 = 𝜂 √𝑆𝑐⁄  where 

𝜂 is the Kolmogorov scale and 𝑆𝑐 ≫ 1 is the Schmidt number of 

the inertial particles. For practical simulations some form of 

averaging or statistical emulation of the turbulent field is 

required. We adopt a hybrid approach. Large eddy simulation 

(LES) is employed for the carrier phase whereby the large scale 

motions are resolved while the subfilter scales are modelled. An 

LES (i.e. filtered) version of Eq. (2) can also be derived but it 

introduces multiple unclosed terms for the non-linear fluid-

particle interactions with closure of the filtered source term being 

particularly problematic. Following Rigopoulos [9] the subfilter 

fluctuations of the PBE are solved using a PDF method. The 

novelty of the present work is to introduce inertial effects into the 

PDF-PBE for the first time. The continuous number density 

function is approximated as a set of classes where each class 

represents a subset of the turbulent distribution of number 

densities. Each class includes a range of droplet sizes having 

similar inertial effects and the relevant velocity of this class is 

represented by 𝑼𝜶. The combination of classes reproduces the 

entire turbulent distribution. 

The turbulent distribution of each set is represented by the 

filtered one-time, one-point joint PDF of number density 

𝐹𝑁
̅̅̅̅ (𝒏𝜶; 𝑥, 𝑡), where 𝒏𝜶 is the sample space for 𝑵𝜶. Significantly, 

𝑊 is not filtered but instead appears naturally in exact form. 𝐹𝑁
̅̅̅̅  

is highly dimensional making solution via a finite volume scheme 

intractable. Instead the PDF is represented by an ensemble of 

statistically independent notional particles which are 

computational elements that should not be confused with real 

inertial particles. The notional particles evolve according to 

stochastic differential equations  

𝑑𝒙(𝑝) = 𝑼(𝑝) 𝑑𝑡 (3) 

𝑑𝑼(𝑝) = 𝑨𝑑𝑡 = −
1

𝜏𝑝
(𝑼(𝑝) − �̅�(𝑝))𝑑𝑡 +

𝜌𝑝−𝜌𝑓̅̅ ̅̅

𝜌𝑝
𝒈𝑑𝑡 + √𝑏𝑑𝒘 (4) 

𝑑𝑵(𝑝) = 𝑾(𝑝)𝑑𝑡. (5) 

The superscript (p) denotes values on, or at the location of, the 

notional particles. The deterministic part of acceleration due to 

the drag force is only considered here and hence the acceleration 

is −
1

𝜏𝑝
(𝑼(𝑝) − �̅�(𝑝)) where �̅� is the LES filtered carrier velocity 

and 𝜏𝑝 is the response time due to fluid-particle interaction forces 

and for spherical particles of dimeter 𝑑𝑝 may be defined as 

1

𝜏𝑝
=

6

8

𝜌𝑓̅̅ ̅̅

𝜌𝑝

𝐶𝐷

𝑑𝑝
|𝑼(𝑝) − �̅�(𝑝)| (6) 

where 𝜌𝑝 and 𝜌𝑓̅̅ ̅ are the dispersed phase density and the LES 

filter density, respectively. 𝐶𝐷 is the drag coefficient modelled for 

spherical particles as [3] 

𝐶𝐷 = {
24

𝑅𝑒
(1 +

𝑅𝑒2 3⁄

6
)

0.424                    
  for 0 < 𝑅𝑒 < 1000 (7) 

where 𝑅𝑒 = |𝑼(𝑝) − �̅�(𝑝)|𝑑𝑝 𝜈⁄  is the Reynolds number. 

Binned Stokes Method 

If the dispersed phase was not subject to inertial forces it would 

be possible to solve Eq. (3) – (4) on an ensemble of notional 

particles where each particle represents a single turbulent 

realisation of the entire number density function. However, since 

inertial forces are important it is not possible to use a single 

notional particle moving at a certain velocity to represent the 

number density function over a large range of inertial particle 

sizes. The brute force, and therefore expensive, option is to 

ensure that each notional particle represents only one size class 

and as the inertial particles breakup additional notional particles 

are added. This is essentially the method used by Bini and Jones 

[3] although their method was not derived from the point of view 

of the population balance equation.  Computational cost in that 

approach can easily grow by two orders of magnitude and more 

viable methods are required. 

The effects of inertia are usually quantified through the Stokes 

number defined as 𝑆𝑡 =
𝜏𝑝

𝜏𝑓
 where 𝜏𝑓 is the fluid characteristic 

time scale. The Stokes number expresses the response of an 

inertial particle to changes in the carrier flow (e.g due to eddies). 

Particles with different sizes experience a different drag force and 

therefore exhibit different accelerations. For 𝑆𝑡 ≪ 1, particles 

have small inertia, quickly accelerate to the local flow velocity 

and thus closely follow the flow streamlines. For 𝑆𝑡 ≫ 1, 

particles have large inertia and are increasingly less affected by 

the variations in the carrier flow. We can therefore define specific 

Stokes number ranges (or bins) in which inertial particles may be 

assumed to have the same dynamic response to the carrier flow. 

In the binned Stokes approach for our PDF-PBE model individual 

notional particles represent the number density for inertial 

particles within a single bin and the acceleration is obtained 

according to an average Stokes number for that each bin.  An 

optimal choice of the Stokes bins can reduce the required number 

of notional particles leading to a significant reduction in 

computational cost compared to brute force method while 

maintaining a high level of accuracy. Our aim is to develop a 

rigorous procedure for selecting the Stokes bins for any range of 

inertial particles sizes. Eq. (4) can be integrated in fractional 

steps. Here we deal with the first term which accounts for the 

inertial forces through the time scale, 𝜏𝑝, and the slip velocity. 

Integration of this term over the flow time scale, 𝜏𝑓, yields 

𝑼(𝑝)(𝑡 + 𝜏𝑓) = �̅�(𝑝) − (�̅�(𝑝) − 𝑼(𝑝)(𝑡)) 𝑒𝑥𝑝 (−
𝜏𝑓

𝜏𝑝
) (8) 

It can be seen that the particle acceleration is governed by an 

exponential function, 𝑔 = 𝑒𝑥𝑝 (−
1

𝑆𝑡
). Figure 1 shows this 

function versus the St number. For low Stokes number the 

function asymptotes to zero indicating that any slip velocity will 

result in a particle immediately accelerating to match the carrier 

flow. We choose  𝑆𝑡 = 0.25 corresponding to 𝑔 ≈ 0.02 as a 

lower cut-off with particles in the range 0 < 𝑆𝑡 < 0.25 deemed 

to be non-inertial. For large Stokes number the function 



asymptotes to unity indicating that a particle is not sensitive to a 

slip velocity. We choose  𝑆𝑡 = 50 corresponding to 𝑔 ≈ 0.98 as 

an upper cut-off with the trajectory of particles in the range 50 <
𝑆𝑡 < ∞ deemed to be non-responsive to fluid-particle 

interactions. All particles in either of these Stokes ranges can be 

binned for determining their dynamic response to the flow. 

The interval 0.25 < 𝑆𝑡 < 50 exhibits strong fluid-particle 

interactions and it is not obvious a priori how particles in that 

range should be binned (i.e. number and spacing) but obviously 

we want the minimum possible number of bins while maintaining 

accuracy. Our testing has revealed that constant spacing in 

logarithmic space ∆(log 𝑆𝑡) works best with a series of numerical 

trials conducted below to find the optimum number of equally 

sized bins. To illustrate Fig. 1 shows bins corresponding to 

∆(log 𝑆𝑡) = 0.57   obtained from five points on the curve 

resulting in six bins in total (including the non-inertial and non-

responsive bins in the low and high Stokes limits). Since the 

shape of the function g is unaffected by the range of Stokes 

numbers accessed in any particle laden flow, it is only necessary 

conduct the tests once for a range of flow types to determine the 

optimum value of  ∆. The number of Stokes bins in a given 

computation is then dependent only on the Stokes number range 

that is present.  

 

Figure 1. Exponential function g versus St number.  

Test Cases Studied and Numerical Setup 

To validate the postulated Stokes binning method for the PDF-

PBE we construct a numerical test case of inertial particle 

dispersion in a turbulent mixing layer. For this purpose, the 

evolution of a relatively high velocity air jet at atmospheric 

pressure is simulated using a compressible LES code with a 

standard Smagorinsky subgrid model implemented in an open 

source C++ code known as OpenFOAM. The mean jet velocity is 

50 m/s whereas the coflow velocity is 1 m/s. The jet diameter, D, 

is 4 mm. The computational domain is a three-dimensional 

rectangular mesh of 20D in the axial direction and 10D in both 

transverse directions. Time-varying realistic turbulent velocity 

boundary conditions are applied for the inflow jet based on a 

turbulence intensity of 15% and an integral length-to-jet diameter 

ratio of 0.125. The hexahedral mesh has about 1M cells 

uniformly distributed in all directions with a mesh size of 0.5 

mm. Once a statistically stationary carrier flow was obtained, 

inertial particles with different diameters were homogenously 

injected from the jet with the mean jet carrier velocity. For 

simplicity, the effects of the inertial particle motions on the 

carrier phase are not taken into account. The particles have 

uniform density of 780 kg/m3 (typical of hydrocarbon fuels) and a 

mass loading is 0.2 g/s. The main case consists of particles size 

ranging from 1 µm to 50 µm. Two additional cases with particle 

sizes in the range 1-100 µm and 1-10 µm are also considered. 

Table 1 shows the range of (numerical) St number obtained based 

on a numerical time step of 20 µs, for each set of particle size. 

For each case the simulation was initially conducted without 

binning followed by simulations with Stokes binning with 

progressively smaller bin sizes. 

 

d (µm) Stokes number 

1-50 0.097-220 

1-100 0.097-900 

1-10 0.097-11 
Table 1. Stokes number range for each set of particle size 

Results and Discussion 

Figure 2a, b, and c show liquid particles concentration at 2 ms 

after injection for various range of diameters presented in Table 

1. Each point represents a liquid particle accelerated based on Eq. 

(8). The particles are coloured by their diameter. As presented in 

Fig. 2a and b, the heavy (larger) particles mostly corresponding 

to high Stokes numbers follow their own trajectories and they are 

simply convected downstream with only a slightly detectable 

response to fluid-particle interactions. While light particles with 

small Stokes numbers follow the fluid pattern and disperse from 

the centreline. On the contrary, as shown in Fig. 2c, a larger 

numbers of particles follow the carrier fluid streamlines when the 

range of particles size is from 1 µm to 10 µm. Figure 2d presents 

dispersion of particles with the same size range shown in Fig. 2c 

(1-10 µm), however, all particles, regardless of their St number, 

have been forced to follow the carrier flow. The level of 

dispersion for this case is similar that that in Fig. 2c where 

particles accelerate according to their St number. 

 

Figure 2. Particle distribution where particles move based on Eq. (9) for 

particles ranging in size of a) 1 μm-50 μm, b) 1 μm-100 μm, and c) 1 μm-

10 μm and d) Particle distribution where particles move with the carrier 
fluid velocity for particles ranging in size of 1 μm-10 μm. 

To demonstrate the optimal number of Stokes bins, we repeat the 

simulation with Stokes bins included. As shown in Table 2, we 

consider 3, 5 and 7 internal St points (corresponding to 4, 6 and 8 



bins). The last row shows St points where ∆ is same as 7-points 

while the St points smaller than 1 are neglected and hence less St 

bins are required. This will discussed later. 

Figure 3 presents radial profiles of axial velocity root mean 

square (vrms) and particle diameter root mean square (drms) at an 

axial location 60 mm downstream of the jet exit plane. Symbols 

present results of the original (unbinned) solution while lines 

show results obtained with the binning method. It can be seen 

that drms changes only marginally as the number of bins increases 

while vrms obtained using the binned method is sensitive to the 

number of bins but quickly converges as the number of bins is 

increased. The results obtained using ∆=0.38 are in an excellent 

agreement with the unbinned solution. As demonstrated in Fig. 2, 

particles with small St number follow the carrier flow trajectories 

and it is expected that fewer bins are required where 𝑆𝑡 < 1. To 

confirm this, the results for ∆=0.38 but five points are also 

presented in Fig 3. It can be seen that they are very similar to the 

results obtained using seven points and ∆=0.38. It confirms five 

Stokes points are sufficient and lead to an excellent agreement 

for calculated vrms. 

For other cases, results are only shown for the 5-points and 

∆=0.38. Similar profiles are presented in Fig. 4 and 5 for the 

cases including particles of 1-100 µm and 1-10 µm, respectively. 

It can be seen that for both diameter ranges, the results obtained 

using the Stokes binned method agree very well with the original 

results for individual particles. 

 

Figure 3. Radial profiles of vrms and drms (1-50 μm). Symbols, original 

(unbinned) solution; lines, binned solutions. 

 

Figure 4. Radial profiles of vrms and drms (1-100 μm). Symbols, original 

(unbinned) solution; lines, binned solution (5-points ∆=0.38). 

Conclusions 

This paper presented a PDF form of PBE for polydispersed 

inertial particles. A novel numerical method based on Stokes 

binning is proposed to explicitly include effects of inertia into the 

PDF-PBE for the first time. In this approach, particles accelerate 

according to an average Stokes number obtained within bins. The 

method was investigated using a test case involving the turbulent 

jet dispersion of particles ranging in size from 1 μm to 100 μm. 

The results confirm the ability of the approach to accurately 

model the particle dispersion using as few as six Stokes bins thus 

offering the potential to greatly reduce the computational cost of 

the PDF-PBE equations. 

 

Figure 5. Radial profiles of vrms and drms (1-10 μm). Symbols, original 
(unbinned) solution; lines, binned solution (5-points ∆=0.38). 
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